AIRLINK 71.21 Increased By ▲ 2.01 (2.9%)
BOP 5.01 Increased By ▲ 0.11 (2.24%)
CNERGY 4.35 Increased By ▲ 0.09 (2.11%)
DFML 31.73 Increased By ▲ 0.48 (1.54%)
DGKC 80.64 Increased By ▲ 3.39 (4.39%)
FCCL 21.30 Increased By ▲ 1.30 (6.5%)
FFBL 35.20 Increased By ▲ 0.20 (0.57%)
FFL 9.31 Increased By ▲ 0.19 (2.08%)
GGL 9.79 Decreased By ▼ -0.01 (-0.1%)
HBL 111.90 Decreased By ▼ -0.86 (-0.76%)
HUBC 135.35 Increased By ▲ 2.31 (1.74%)
HUMNL 7.10 Increased By ▲ 0.15 (2.16%)
KEL 4.35 Increased By ▲ 0.12 (2.84%)
KOSM 4.40 Increased By ▲ 0.15 (3.53%)
MLCF 37.73 Increased By ▲ 1.13 (3.09%)
OGDC 136.72 Increased By ▲ 3.85 (2.9%)
PAEL 23.60 Increased By ▲ 0.96 (4.24%)
PIAA 24.47 Increased By ▲ 0.27 (1.12%)
PIBTL 6.61 Increased By ▲ 0.15 (2.32%)
PPL 121.45 Increased By ▲ 5.15 (4.43%)
PRL 26.95 Increased By ▲ 1.05 (4.05%)
PTC 13.40 Increased By ▲ 0.32 (2.45%)
SEARL 52.40 Increased By ▲ 0.40 (0.77%)
SNGP 70.50 Increased By ▲ 2.90 (4.29%)
SSGC 10.50 Decreased By ▼ -0.04 (-0.38%)
TELE 8.35 Increased By ▲ 0.07 (0.85%)
TPLP 11.00 Increased By ▲ 0.20 (1.85%)
TRG 60.08 Increased By ▲ 0.79 (1.33%)
UNITY 25.06 Decreased By ▼ -0.07 (-0.28%)
WTL 1.28 Increased By ▲ 0.01 (0.79%)
BR100 7,518 Increased By 109 (1.47%)
BR30 24,627 Increased By 591 (2.46%)
KSE100 71,724 Increased By 1056.8 (1.5%)
KSE30 23,527 Increased By 303.5 (1.31%)

SYDNEY: An Australian and Chinese collaboration has created the most accurate 3D model so far of the Milky Way, showing the galaxy to be curved rather than a flat disc shape.

The team from Macquarie University and the Chinese Academy of Sciences used the locations of 1,339 Cepheid stars to create their model, each of which are up to 100,000 times brighter than the sun.

"It was very well known already for a number of decades that if you look at our Milky Way galaxy from the side it looks like a flat pancake," study co-author Professor Richard de Grijs from Macquarie University told Xinhua on Wednesday.

"What we've shown is that the young stars in the Milky Way, particularly a type of star called Cepheid variables, actually show this warped distribution."

Researchers said the shape is caused by torque from the rotation of the galaxy's inner stars, which circle the center once every 250-300 million years.

The pull of gravity from the center is much less on the stars and gas clouds at the outer edge of the galaxy, which gives the Milky Way an S-like curved appearance.

The breakthrough is the result of a new method which is able to map the distance of the Cepheid stars from our sun. Combined with a Cepheid's observed brightness, its pulsation period can be used to obtain a highly accurate distance measurement.

"It is notoriously difficult to determine distances from the Sun to parts of the Milky Way's outer gas disc without having a clear idea of what that disc actually looks like," study lead author Chen Xiaodian from the research team of Chinese Academy of Sciences explained.

"However, we recently published a new catalogue of well-behaved variable stars known as classical Cepheids, for which very accurate distances can be determined with an error of only three to five percent."

The collaboration between the Chinese and Australian scientists is the result of de Grijs' time working at Peking University in Beijing where Chen was a Phd student. Chen now works under de Gris' longtime friend and collaborator Deng Licai at the Chinese Academy of Sciences.

"We've been collaborating since about 2003, this is a very strong collaboration and has continued down here in Australia," de Grijs said.

Copyright APP (Associated Press of Pakistan), 2019

Comments

Comments are closed.