AIRLINK 81.10 Increased By ▲ 2.55 (3.25%)
BOP 4.82 Increased By ▲ 0.05 (1.05%)
CNERGY 4.09 Decreased By ▼ -0.07 (-1.68%)
DFML 37.98 Decreased By ▼ -1.31 (-3.33%)
DGKC 93.00 Decreased By ▼ -2.65 (-2.77%)
FCCL 23.84 Decreased By ▼ -0.32 (-1.32%)
FFBL 32.00 Decreased By ▼ -0.77 (-2.35%)
FFL 9.24 Decreased By ▼ -0.13 (-1.39%)
GGL 10.06 Decreased By ▼ -0.09 (-0.89%)
HASCOL 6.65 Increased By ▲ 0.11 (1.68%)
HBL 113.00 Increased By ▲ 3.50 (3.2%)
HUBC 145.70 Increased By ▲ 0.69 (0.48%)
HUMNL 10.54 Decreased By ▼ -0.19 (-1.77%)
KEL 4.62 Decreased By ▼ -0.11 (-2.33%)
KOSM 4.12 Decreased By ▼ -0.14 (-3.29%)
MLCF 38.25 Decreased By ▼ -1.15 (-2.92%)
OGDC 131.70 Increased By ▲ 2.45 (1.9%)
PAEL 24.89 Decreased By ▼ -0.98 (-3.79%)
PIBTL 6.25 Decreased By ▼ -0.09 (-1.42%)
PPL 120.00 Decreased By ▼ -2.70 (-2.2%)
PRL 23.90 Decreased By ▼ -0.45 (-1.85%)
PTC 12.10 Decreased By ▼ -0.89 (-6.85%)
SEARL 59.95 Decreased By ▼ -1.23 (-2.01%)
SNGP 65.50 Increased By ▲ 0.30 (0.46%)
SSGC 10.15 Increased By ▲ 0.26 (2.63%)
TELE 7.85 Decreased By ▼ -0.01 (-0.13%)
TPLP 9.87 Increased By ▲ 0.02 (0.2%)
TRG 64.45 Decreased By ▼ -0.05 (-0.08%)
UNITY 26.90 Decreased By ▼ -0.09 (-0.33%)
WTL 1.33 Increased By ▲ 0.01 (0.76%)
BR100 8,052 Increased By 75.9 (0.95%)
BR30 25,581 Decreased By -21.4 (-0.08%)
KSE100 76,707 Increased By 498.6 (0.65%)
KSE30 24,698 Increased By 260.2 (1.06%)

image

Just in, scientists have developed now what could be called a fourth state of matter dubbed time crystals, although the name sounds like something out of a sci-fi flick, they are very real and may not have to do much with time travel.

The difference between a regular crystal and time crystal is plain enough as the former has a structure that repeats itself in space, though the lateral have structures that repeat in time.

According to a paper published in Physical Review Letter, a team of American researchers led by Norman Yao over from UC Berkeley, discussed in length the process of making time crystals and observing their properties.

Time crystals were first acquired a couple of months ago, when researchers from the University of Maryland created a chain of 10 ytterbium atoms and hit them with two lasers multiple times to keep them out of a stationery state thus equilibrium.

However, they discovered that the chain would settle down into a stable but repetitive patter every time, but the matter itself stayed out of equilibrium.

This marked the first instance of a study of a new kind of matter that could not stay put in motionless equilibrium like diamonds.

"Wouldn't it be super weird if you jiggled Jell-O and found that somehow it responded at a different period? But that is the essence of the time crystal. You have some periodic driver that has a period 'T', but the system somehow synchronizes so that you observe the system oscillating with a period that is larger than 'T'," said Yao, while giving a statement.

This experiment is not just an isolated incident, a different set up was held out at Harvard while being under the supervision Yao himself; [owing to good fortunes] the results were found to be consistent and submitted for publication looking for the first time into a new construct of matter.

"This is a new phase of matter, period, but it is also really cool because it is one of the first examples of non-equilibrium matter. For the last half-century, we have been exploring equilibrium matter, like metals and insulators. We are just now starting to explore a whole new landscape of non-equilibrium matter," Yao further added.

Time crystals were first proposed in 2012 by Nobel Laureate Frank Wilczek, and while scientists do not have a use for them yet, they might have the right properties to be useful in the time to come.

Copyright Business Recorder, 2017

Comments

Comments are closed.