AIRLINK 73.18 Increased By ▲ 0.38 (0.52%)
BOP 5.00 Decreased By ▼ -0.06 (-1.19%)
CNERGY 4.37 Increased By ▲ 0.04 (0.92%)
DFML 29.95 Decreased By ▼ -0.57 (-1.87%)
DGKC 91.39 Increased By ▲ 5.44 (6.33%)
FCCL 23.15 Increased By ▲ 0.80 (3.58%)
FFBL 33.50 Increased By ▲ 0.28 (0.84%)
FFL 9.92 Increased By ▲ 0.14 (1.43%)
GGL 10.35 Decreased By ▼ -0.05 (-0.48%)
HBL 113.01 Decreased By ▼ -0.61 (-0.54%)
HUBC 136.28 Increased By ▲ 0.08 (0.06%)
HUMNL 9.60 Decreased By ▼ -0.43 (-4.29%)
KEL 4.78 Increased By ▲ 0.12 (2.58%)
KOSM 4.72 Increased By ▲ 0.32 (7.27%)
MLCF 39.89 Increased By ▲ 1.54 (4.02%)
OGDC 133.90 Increased By ▲ 0.50 (0.37%)
PAEL 28.85 Increased By ▲ 1.45 (5.29%)
PIAA 25.00 Increased By ▲ 0.24 (0.97%)
PIBTL 6.94 Increased By ▲ 0.39 (5.95%)
PPL 122.40 Increased By ▲ 1.19 (0.98%)
PRL 27.40 Increased By ▲ 0.25 (0.92%)
PTC 14.80 Increased By ▲ 0.91 (6.55%)
SEARL 60.40 No Change ▼ 0.00 (0%)
SNGP 70.29 Increased By ▲ 1.76 (2.57%)
SSGC 10.42 Increased By ▲ 0.09 (0.87%)
TELE 8.85 Decreased By ▼ -0.20 (-2.21%)
TPLP 11.32 Increased By ▲ 0.06 (0.53%)
TRG 66.57 Increased By ▲ 0.87 (1.32%)
UNITY 25.20 Decreased By ▼ -0.05 (-0.2%)
WTL 1.55 Increased By ▲ 0.05 (3.33%)
BR100 7,674 Increased By 40.1 (0.53%)
BR30 25,457 Increased By 285.1 (1.13%)
KSE100 73,086 Increased By 427.5 (0.59%)
KSE30 23,427 Increased By 44.5 (0.19%)

In the beginning, more than 13 billion years ago, the Universe was an undifferentiated soup of three simple, single-atom elements. Stars would not form for another 100 million years.
But within 100,000 years of the Big Bang, the very first molecule emerged, an improbable marriage of helium and hydrogen known as a helium hydride ion, or HeH+.
"It was the beginning of chemistry," said David Neufeld, a professor at John Hopkins University and co-author of a study published Wednesday detailing how - after a multi-decade search - scientists finally detected the elusive molecule in space.
"The formation of HeH+ was the first step on a path of increasing complexity in the Universe," as momentous a shift as the one from single-cell to multicellular life on Earth, he told AFP.
Theoretical models had long since convinced astrophysicists that HeH+ came first, followed - in a precise order - by a parade of other increasingly complex and heavy molecules. HeH+ had also been studied in the laboratory, as early as 1925.
But detected HeH+ in its natural habitat had remained beyond their grasp.
"The lack of definitive evidence of its very existence in interstellar space has been a dilemma for astronomy for a long time," said lead author Rolf Gusten, a scientist at the Max Planck Institute for Radioastronomy in Bonn. Researchers knew where to look.
Already in the 1970s, models suggested that HeH+ should exist in significant quantities in the glowing gases ejected by dying Sun-like stars, which created conditions similar to those found in the early Universe.
The problem was that the electromagnetic waves given off by the molecule were in a range - far-infrared - cancelled out by Earth's atmosphere, and thus undetectable from the ground.
So NASA and the German Aerospace Center joined forces to create an airborne observatory with three main components: a massive 2.7-metre telescope, an infrared spectrometer, and a Boeing 747 - with a window-like square cut away from it fuselage - big enough to carry them.
From a cruising altitude of nearly 14,000 metres (45,000 feet), the Stratospheric Observatory for Infrared Astronomy, or SOFIA, avoided 85 percent of the atmospheric "noise" of ground-based telescopes.
Data from a series of three flights in May 2016 contained the molecular evidence scientists had long sought, interlaced in the planetary nebula NGC 7027 some 3,000 light years away.

Copyright Agence France-Presse, 2019

Comments

Comments are closed.