AIRLINK 69.92 Increased By ▲ 4.72 (7.24%)
BOP 5.46 Decreased By ▼ -0.11 (-1.97%)
CNERGY 4.50 Decreased By ▼ -0.06 (-1.32%)
DFML 25.71 Increased By ▲ 1.19 (4.85%)
DGKC 69.85 Decreased By ▼ -0.11 (-0.16%)
FCCL 20.02 Decreased By ▼ -0.28 (-1.38%)
FFBL 30.69 Increased By ▲ 1.58 (5.43%)
FFL 9.75 Decreased By ▼ -0.08 (-0.81%)
GGL 10.12 Increased By ▲ 0.11 (1.1%)
HBL 114.90 Increased By ▲ 0.65 (0.57%)
HUBC 132.10 Increased By ▲ 3.00 (2.32%)
HUMNL 6.73 Increased By ▲ 0.02 (0.3%)
KEL 4.44 No Change ▼ 0.00 (0%)
KOSM 4.93 Increased By ▲ 0.04 (0.82%)
MLCF 36.45 Decreased By ▼ -0.55 (-1.49%)
OGDC 133.90 Increased By ▲ 1.60 (1.21%)
PAEL 22.50 Decreased By ▼ -0.04 (-0.18%)
PIAA 25.39 Decreased By ▼ -0.50 (-1.93%)
PIBTL 6.61 Increased By ▲ 0.01 (0.15%)
PPL 113.20 Increased By ▲ 0.35 (0.31%)
PRL 30.12 Increased By ▲ 0.71 (2.41%)
PTC 14.70 Decreased By ▼ -0.54 (-3.54%)
SEARL 57.55 Increased By ▲ 0.52 (0.91%)
SNGP 66.60 Increased By ▲ 0.15 (0.23%)
SSGC 10.99 Increased By ▲ 0.01 (0.09%)
TELE 8.77 Decreased By ▼ -0.03 (-0.34%)
TPLP 11.51 Decreased By ▼ -0.19 (-1.62%)
TRG 68.61 Decreased By ▼ -0.01 (-0.01%)
UNITY 23.47 Increased By ▲ 0.07 (0.3%)
WTL 1.34 Decreased By ▼ -0.04 (-2.9%)
BR100 7,399 Increased By 104.2 (1.43%)
BR30 24,136 Increased By 282 (1.18%)
KSE100 70,910 Increased By 619.8 (0.88%)
KSE30 23,377 Increased By 205.6 (0.89%)
World

Ultrasound has potential to damage coronaviruses, reveals MIT study

  • Scientists found that vibrations between 25 and 100 megahertz triggered the virus’ shell and spikes to collapse and start to rupture within a fraction of a millisecond
  • The effect has ben seen in simulations of the virus in air and in water
Published March 21, 2021

(Karachi) Coronaviruses, including SARS-CoV-2, may be vulnerable to ultrasound vibrations within the frequencies used in medical diagnostic imaging, a new study carried out by researchers from Massachusetts Institute of Technology (MIT), United States claimed.

As per details, the researchers monitored the mechanical response to vibrations across ultrasound frequencies with the help of computer simulations. During the study, the scientists found that vibrations between 25 and 100 megahertz triggered the virus’ shell and spikes to collapse and start to rupture within a fraction of a millisecond. This effect has been seen in simulations of the virus in air and in water.

However, they said that the results obtained are preliminary and based on limited data.

Professor of Applied Mechanics at MIT Tomasz Wierzbicki said, “We’ve proven that under ultrasound excitation the coronavirus shell and spikes will vibrate, and the amplitude of that vibration will be very large, producing strains that could break certain parts of the virus, doing visible damage to the outer shell and possibly invisible damage to the RNA inside.”

He added, “The hope is that our paper will initiate a discussion across various disciplines.”

The team’s results appear online in the Journal of the Mechanics and Physics of Solids.

Comments

Comments are closed.