AIRLINK 78.39 Increased By ▲ 5.39 (7.38%)
BOP 5.34 Decreased By ▼ -0.01 (-0.19%)
CNERGY 4.33 Increased By ▲ 0.02 (0.46%)
DFML 30.87 Increased By ▲ 2.32 (8.13%)
DGKC 78.51 Increased By ▲ 4.22 (5.68%)
FCCL 20.58 Increased By ▲ 0.23 (1.13%)
FFBL 32.30 Increased By ▲ 1.40 (4.53%)
FFL 10.22 Increased By ▲ 0.16 (1.59%)
GGL 10.29 Decreased By ▼ -0.10 (-0.96%)
HBL 118.50 Increased By ▲ 2.53 (2.18%)
HUBC 135.10 Increased By ▲ 2.90 (2.19%)
HUMNL 6.87 Increased By ▲ 0.19 (2.84%)
KEL 4.17 Increased By ▲ 0.14 (3.47%)
KOSM 4.73 Increased By ▲ 0.13 (2.83%)
MLCF 38.67 Increased By ▲ 0.13 (0.34%)
OGDC 134.85 Increased By ▲ 1.00 (0.75%)
PAEL 23.40 Decreased By ▼ -0.43 (-1.8%)
PIAA 26.64 Decreased By ▼ -0.49 (-1.81%)
PIBTL 7.02 Increased By ▲ 0.26 (3.85%)
PPL 113.45 Increased By ▲ 0.65 (0.58%)
PRL 27.73 Decreased By ▼ -0.43 (-1.53%)
PTC 14.60 Decreased By ▼ -0.29 (-1.95%)
SEARL 56.50 Increased By ▲ 0.08 (0.14%)
SNGP 66.30 Increased By ▲ 0.50 (0.76%)
SSGC 10.94 Decreased By ▼ -0.07 (-0.64%)
TELE 9.15 Increased By ▲ 0.13 (1.44%)
TPLP 11.67 Decreased By ▼ -0.23 (-1.93%)
TRG 71.43 Increased By ▲ 2.33 (3.37%)
UNITY 24.51 Increased By ▲ 0.80 (3.37%)
WTL 1.33 No Change ▼ 0.00 (0%)
BR100 7,493 Increased By 58.6 (0.79%)
BR30 24,558 Increased By 338.4 (1.4%)
KSE100 72,052 Increased By 692.5 (0.97%)
KSE30 23,808 Increased By 241 (1.02%)
Technology

Engineers harvest heart’s energy to power, recharge life-saving devices

In order to recharge life-saving devices such as pacemakers, researchers have figured out a new way of harvesting e
Published February 11, 2019

In order to recharge life-saving devices such as pacemakers, researchers have figured out a new way of harvesting energy from the heart itself, more like a self-charging pacemaker.

Engineers from Dartmouth College have developed a dime-sized device through which kinetic energy of the heart can be converted into electricity for powering a wide-range of implantable devices.

Life-saving devices such as pacemakers, defibrillators and other implantable devices are usually powered by batteries that need to be replaced every five to 10 years. The replacements require surgery which can be expensive and can also possibly create complications and infections, as per Science Daily.

“We’re trying to solve the ultimate problem for any implantable biomedical device," said lead researcher John X.J. Zhang. “How do you create an effective energy source so the device will do its job during the entire life span of the patient, without the need for surgery to replace the battery?”

The team proposes modifying pacemakers to harness the kinetic energy of the lead wire that is attached to the heart, hence converting it into electricity to continually charge the batteries. The added material is a kind of thin polymer piezoelectric film called ‘PVDF’.

When designed with porous structures like an array of small buckle beams or a flexible cantilever, the device can convert even small mechanical motion to energy. Also, the same modules can potentially be used as sensors to allow data collection for real-time monitoring of patients.

“Of equal importance is that the device does not interfere with the body’s function,” said first author Lin Dong of the study published in Advanced Materials Technology. “We knew it had to be biocompatible, lightweight, flexible, and low profile, so it not only fits into the current pacemaker structure but is also scalable for future multi-functionality.”

Zhang and his team believes that the self-charging pacemaker is a long way to be available for consumer use and can be put to market in five years.

Copyright Business Recorder, 2019

Comments

Comments are closed.